T E C H N I C A L N o T E

GENERIC APPROACH TO
NVISION PERFORMANCE
UNING

©David Kurtz

Tuesday 19 April 2016

Technical Note

Version 1.2

(E-mail: david.kurtz@go-faster.co.uk, telephone +44-7771-760660)
File: nVision Tuning.Generic.docx, 19 April 2016

Contents

L1 oo [0 Tod £ T o S USSSSPRT 3
Ledger and Tree Selector INAEXING ........coviiieiieie et re e e e 4
(Lo [0 1= [T L=y oSSBTSO 4
Tree SeleCtOr INAEXING .....voovi ettt e e te e areeneenes 6
Optimal INdeX COMPIESSION .....c.viviieiiitirieieite ettt st sb e et sb et sr e ebesre e 7
nVision Tree Performance OPLiONS........ccoveieriieiesiee et 9
Generally Recommended Tree Performance OPtioNS.........ocoveviereiineneineneese e 10
IMPIEMENTALION ...t ettt bbbt e e b e 11
REVEISAL ...t bbbttt b e bbb e e e e 13
Tree Performance OVErrides iN LAYOULS .........ccuieiieiinienese s 14
C0alESCING TTEE LBAVES ....cveiveieiisie ettt ettt ettt sttt 15
Instructions for running 1€afcoal.sgl .........cccoviiiiiiii e 16
Clearing Selector Control Records for which there is no Tree Definition ............cccccovvenee. 20
Clear Dynamic Selectors from Tree Selector Tables ..o 21
Maintaining Statistics on Tree Selector Tables. ..o 23
First Time Generation OF SAtiStICS ........ccocvriiiiiiiiie e 23
IMPIEMENTALION ...ttt et sttt sbe et b 26
On-Going Maintenance of Statistics on Tree Selector TableS ........ccocvvvvivvivicvnicccicscn 27
Database Partitioning of Ledger tables ..o 29
RANGE ParTItIONING ..ottt bbb sae e 30

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 1


mailto:david.kurtz@go-fastert.co.uk

TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

SUD-PAMTITIONING et ettt b e et bbb e et e e b b e 31
Tuning NVision Without Partitioning .........ccocooeriiiiiiieseeeee e 32
SQL Outlines/Baselings/ProfileS/PatChes .........cccccviiiiiiiiricirec et srae 33
Additional nVision Monitoring with Fine Grain Audit ..........cccceeoveiiiieieiicie e 34
(€] g1 CTo J Y T=To TS 34
AUdit HANAIEE PrOCEAUIE ..ottt sttt 34
AUGIE POTICIES....c.eee ettt bbb re et sbe e 37
AUAIE AFCNIVEIPUITE ..ottt 38
Detecting Use of DYNamMIC SEIECIOIS ......ccviviiieiiiiiie e 39
Other RecOMMENAEd ChaNQES.......cciviieieiieiie ettt ne et e e sre e 40
PeopleTools Index PIatform FIags.........ccooviiiriieeicie e 40

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 2 ©DAVID KURTZ



19 APRIL 2016

Introduction

©DAVID KURTZ

TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

This document sets out a number of techniques that can be used to improve and stabilise the
performance of PeopleSoft nVision reports. It is based on practical experience on real
productions systems at a number of customer sites over a number of years.

However, it is a generic document, and makes general statements. Every customer is
different, because their data is different and often their method of analysis differs.

Some of the techniques discussed are specific to the Oracle database, although in some cases,
such as partitioning, similar features are available on other databases.

We will look at

Indexing
o Effective indexing of LEDGER and LEDGER_BUDG tables to match the
analysis criteria of the reports.
o Enhanced indexing of the PSTREESELECT tables, so that the indexes fully
satisfy the queries without the need to visit the tables.
o  Collection of statistics and extended statistics on the PSTREESELECT tables.
e Using the nVision performance options to

o use static selectors instead of dynamic selectors. They make it difficult to
maintain up-to-date optimizer statistics on the selector tables

o simplify SQL statements by replacing joins with literal crtieria

o | also suggest use of Oracle Fine Grained Auditing to

= enhance instrumentation,
= detect the use of dynamic selectors.
e  Appropriate partitioning of the LEDGER and LEDGER_BUDG tables.

o If the partitioning option is not available, then I strongly recommended that
as much historical data as possible is purged from the LEDGER and
LEDGER_BUDG tables.

e Archiving.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 3



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

Ledger and Tree Selector Indexing

Ledger Indexing

PeopleSoft delivers a one-size-fits-all approach to indexing, while the shape of customer data
and to some extent the way it is used varies from system to system. This leads to the need for
different customers using of the same PeopleSoft module to sometimes require different
indexes.

The indexing on the PS_LEDGER and PS_LEDGER_BUDG tables needs to match the
analysis criteria used in the nVision report. There may be other custom ledger tables that also
need to be indexed appropriately. This will vary from system to system. So the indexing of
these tables is also a matter for each customer. It is usually necessary to add additional
indexes to these tables for the benefit of nVision.

In general

o columns with single value equality criteria are at the front of the index,
o columns with multiple criteria or inequality criteria are next,
o colums with inequality crtieria are last

Let's look at some queries produced by nVision

SELECT A.ACCOUNT, SUM( A.POSTED BASE AMT)

FROM PS LEDGER A

WHERE (A.LEDGER IN ('LOCAL', 'OTHER'")

AND A.FISCAL YEAR = 2014

AND A.ACCOUNTING PERIOD = 5

AND (A.ACCOUNT="4xxxxxx' OR A.ACCOUNT='4xxxxxxX' ..)

AND (A.OPERATINGiUNIT:'USXXX' OR A.OPERATINGiUNIT:'USXXX' OR ..)
AND A.BUSINESS UNIT = 'USxxx")

GROUP BY A.ACCOUNT

I would think of building and index the following columns: LEDGER, FISCAL_YEAR,
ACCOUNTING_PERIOD, BUSINESS_UNIT, OPERATING_UNIT, ACCOUNT. Thisisa
single period query so ACCOUNTING_PERIOD is near the front of the index, immediately
after fiscal year.

ACCOUNTING_PERIOD is never used without using FISCAL_YEAR, though occasionaly
you might see a query by FISCAL_YEAR that does not reference ACCOUNTING_PERIOD.
So ACCOUNTING_PERIOD should never preceed FISCAL_YEAR in the list of indexed
columns.

LEDGER was put at the front of the index because there are fewer values than there are for
fiscal year.

SELECT B.TREE NODE NUM, SUM( A.POSTED BASE AMT)

FROM PS LEDGER A, PSTREESELECT10 B

WHERE ( A.LEDGER IN ('LOCAL','OTHER')

AND A.FISCAL YEAR = 2014

AND A.ACCOUNTING PERIOD BETWEEN 1 AND 5

AND B.SELECTOR NUM=2XXXXXX

AND A.ACCOUNT BETWEEN B.RANGE_FROM_IO AND B.RANGE_TO_IO

AND B.TREE NODE NUM BETWEEN 1500000000 AND 1749999999

AND (A.OPERATINGiUNIT='USXXX' OR A.OPERATINGiUNIT='USXXX' OR ..)
GROUP BY B.TREE NODE NUM

This time | would suggest an index on the following columnd: LEDGER, FISCAL_YEAR,
OPERATING_UNIT, ACCOUNT, ACCOUNTING_PERIOD. This is a year-to-date query,
so this time ACCOUNTING_PERIOD has been pushed to the back of the list of columns.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 4 ©DAVID KURTZ



19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX
It is often necessary to build pairs of indexes for each set of analysis criteria. One for single
period queries, one for year to date queries.

Sometimes, | have added columns that are not selective, but which are referenced by the
query, so that the index can satisfy the query without needing to visit the table.

Consider the following query.

SELECT A.ACCOUNT, SUM(A.POSTED TOTAL AMT)
FROM PS LEDGER A

WHERE A.LEDGER='ACTUALS'

AND A.FISCAL YEAR=2016

AND A.ACCOUNTING PERIOD BETWEEN 1 AND 12
AND A.CURRENCY CD='GBP'

AND A.STATISTICS_CODE=' '

AND (A.BUSINESS UNIT=..)

GROUP BY A.ACCOUNT

e  Currency code will not be a selective column in a single currency system.
e  Statistics code is rarely selective.
e There is no criteriaon POSTED_TOTAL_AMT.

However, | could put all three columns into the index, so that there is no need to look up the
row on the table in order to obtain the values.

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 5



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Tree Selector Indexing

All the tree selector tables should have the same indexes on the following columns

e PS PSTREESELECTnNN (where nn is in the range 01 to 30):
e  The columns on the unique index are unaltered as; SELECTOR_NUM,
TREE_NODE_NUM, RANGE_FROM_nn, RANGE_TO_nn.

e PSAPSTREESELECTNN.
e SELECTOR_NUM, RANGE_FROM_nn, RANGE_TO_nn,

TREE_NODE_NUM

19 APRIL 2016

Additional columns have be added to this delivered index. The
idea is to be able to fully satisfy the queries on the tree selector
tables without need to visit the table.

Change Record Indexes

Index | Type | Unig | Clust | Custom Order[A/D |Fey Fieldsz Platfm
_ |Kew hd M M All ;I

Azc |SELECTOR_MUM

bze |TREE_MODE_MUM

Aze |RAMGE_FROM_0B

bze  |RAMGE TO 08

Y

bze |SELECTOR_MUM

Aze |RAMGE_FROM_0B

bze  |RAMGE_TO_DB

Aze |TREE_MODE_MUM

Add Index

EdtDDL | Delete Index |

ak | Cancel |

Record Fieldz

RANGE_FROM_02
RaNGE_TO_08

[sELECTOR NUM I
TREE_NDDE_NUM

X |

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 6

©DAVID KURTZ



19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Optimal Index Compression

Oracle can compress more rows into a single index leaf block by storing each distinct
combination of compressed column values found within a specific index leaf block in a
“prefix” table within that block, and referring to it rather that storing the column values in
each index entryl. This form of compression is not subject to a special Oracle licence.

The compression prefix length (the number of leading columns to be considered for
compression) can be specified when the index is created. Columns with few distinct values
result in better compression. Putting columns with lower cardinality at the front of the index
can result in better compression, but this must not be done at the expense of the needs of the
application. If too many columns are specified in the prefix length the prefix table could
contain one entry for every row in the block and the compressed index would be larger than
the uncompressed index. There is therefore an optimal compression for every index that
depends on the data in the indexed columns. Oracle can calculate that optimal value for you
with the ANALYZE INDEX VALIDATE STRUCTURE command. | have written a script?
to do this for each index and index partition on a given table.

The indexes on these tables should be compressed.

e PS LEDGER
e PS LEDGER_BUDG
e PSTREESELECT__

NB: If there is a recommended non-zero prefix length but a zero saving, then the compression
has already been applied.

optimal

compression

Prefix
Table Name Index Name Partition Name Length BLOCKS Saving %
PS_LEDGER PSELEDGER 6 42624 .0
PSFLEDGER 4 21504 .0
PSGLEDGER 6 29184 .0
PSHLEDGER 5 32768 .0
PS_LEDGER 19 81280 .0

1 See https://richardfoote.wordpress.com/2008/02/17/index-compression-part-i-low/

2 See calc_opt_comp.sql script at http://www.go-faster.co.uk/scripts.htm#calc_opt_comp.sql

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 7


https://richardfoote.wordpress.com/2008/02/17/index-compression-part-i-low/
http://www.go-faster.co.uk/scripts.htm#calc_opt_comp.sql

TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

The recommended prefix lengths are specified in the create index DDL by adding the keyword
COMPRESS followed by the prefix length. They should be applied in PeopleTools
Application Designer as index overrides to the PCTFREE parameter as shown belows3,

Maintain Index DDL - PSDLEDGER X|

Platform | 5256t |Parameter | Default Yalue | O veride Value

BITMAP

INDE®SFC  |PSIMDEX

IMIT 40000 1757184

HE=T 100000 175718

ks ERT IMLIMITED

PCT n

FCTFREE 10 1 COMPRESS B
[rfiormiz 0

INDEXSFPC  |PSINDEX ;I
[ ] =k I W P n
SOL Templates

Platform; SOLEaze, SizeSet; 0
CREATE [UMNIGUE] IMDEX [IDMARME] OM [TEMAKE] [[ID-COLLIST]):

LI

Platform: DB2, SizeSet: 0

CREATE [UMIGQUE] INDE =DwMER [ID=MAME ] O =MwWMHERZ* [TBHAME]

[ID=COLLIST] USING STOGROUP ==STOGROUP= PRIGTY **FRIATY** SECATY

=EECOTY=* [CLUSTER] BUFFERPOOL =BUFFERPL™ CLOSE MO DEFIME MO; ;I

ViewDDL | Edit Farm | ok | cancel |

They appear in the DDL thus

x
CREATE IMDEX PSDLEDGER OM PS_LEDGER ;I

[BUSIMESS_IUMIT. LEDGER. FISCAL_YE&R.
ACCOUMTING_PERIOD, CURREMCY _CD, ACCOUNT)
TABLESPACE PSINDE= STORAGE [IMITIAL 1757184 ME=T
175718 Ma=E=TENTS UNLIMITED PCTIMCREASE 0) PCTFREE
M IE Sy~ RALLEL HOLOGGIMG;

3 See also Implementing Index Compression (and other Physical Storage Options) via
Application Designer (see http://blog.psftdba.com/2016/02/implementing-index-compression-
and.html)

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 8 ©DAVID KURTZ


http://blog.psftdba.com/2016/02/implementing-index-compression-and.html
http://blog.psftdba.com/2016/02/implementing-index-compression-and.html
http://blog.psftdba.com/2016/02/implementing-index-compression-and.html
http://blog.psftdba.com/2016/02/implementing-index-compression-and.html

19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

nVision Tree Performance Options

PS/nVision has always had ‘Tree Performance Options; panel that can be accessed in the
nVision add-in to Excel. The settings change the SQL generated by nVision without any
functional change to the report.

From PeopleTools 8, Tree Peformance Options can be set on the tree definition in the
database. This setting can then be overridden in individual nVision layout files. This
screenshot is from the nVision PeopleBook?. Note that the operator must have security access
to the Performance Options in order that the ‘Tree Performance’ tab is visible

PeopleSoft n¥ision Layout Options

F'ru:umpts] nPlode Bawes ] rPlode Columnz  Tree Performance l

Tree Name:  [QE_ACE_848_EMPL

Aocezs Method
Clear

' Jain to tree selectar 4

" Suppress join; use literal values Defaults
" Sub-SELECT tree zelector
Tree Selectors
{ Static: Selector
" Dynamic Selectorz
Selector Options
" Single Yalues
f* Ranges of values [>= ... <=]
" Ranges of values [BETWEEM]

Other
[ Morn-specific node criteria [above 2 billion]

k. Cancel

4
http://docs.oracle.com/cd/E41509 01/pt852pbh2/eng/psbooks/tnvs/htm/tnvs15.htm# 4ecd4b8
8 13f1d8f8763 _650b

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 9


http://docs.oracle.com/cd/E41509_01/pt852pbh2/eng/psbooks/tnvs/htm/tnvs15.htm#_4ecd4b88_13f1d8f8763__650b
http://docs.oracle.com/cd/E41509_01/pt852pbh2/eng/psbooks/tnvs/htm/tnvs15.htm#_4ecd4b88_13f1d8f8763__650b

TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

Generally Recommended Tree Performance Options

I would generally recommend that they should be set as follows:

e  Suppress join; use literal values. nVision breaks the queries down by executing some
tree queries separately and putting literal values into the final query.

e  For very large trees (>3000 tree leaves) the resulting SQL can contain very
many predicates and the parse time can be significant. ‘Join' should be used
for such trees.

e  Use Static Selectors.

e When an nVision report uses dynamic selectors, it copies the part of the tree
it wants to use into one of the PSTREESELECT tables using a new selector
number, and deletes them at the end. If an nVision using dynamic selectors
crashes then these rows can be left behind in the table and over time this can
build up and affect table size and statistics on the table.

e  Because dynamic selectors continues alters the contents of the
PSTREESELECT tables, and continues selects increasing values for
SELECTOR_NUM, it is always a challenge to keep the statistics up to date
on these tables. Out of date statistics, particularly the column high value of
SELECTOR_NUM can result Oracle miscasting the selectivity of cirteria,
and lead to sub-optimal execution plans.

e When using static selectors, the whole of each tree required is copied into
the tree selector table, but it is only copied again when the tree changes.

e Use Ranges of Values BETWEEN

e There is no difference between the two range options in Oracle. BETWEEN
criteria are expanded during SQL parse to 2 inequalities during SQL
optimisation, but the SQL generated by nvision is smaller.when using the
BETWEEN option. Fewer predicates are likely to be generated with this
options than with single value options

From PeopleTools 8.x, nVision Tree Performance Options can be set on the tree definition
stored in the database. This will be used in all nVision layouts unless specifically overridden
in the layout.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 10 ©DAVID KURTZ



19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Implementation

1. Action: Update nVision Tree Performance Options on All Trees by running
nvperfopts-6trees.sql scripts in SQL*Plus connected as SYSADM.

a. NB: Going forward, any new trees must be created using the
Performance Options as recommended. Those people who create trees
should be informed of this. However, this script can always be run
again to reset all trees.

b. This script sets the performance options access method to ‘Use Literal
Values’

2. Any nVision layouts which specify nVision performance options will override the
settings on the tree and will need to be changed to confirm to these settings described
aboved.

c. Should it be necessary to reverse these changes out, the option will be to
restore previous versions of the layouts. So backups should be made before
making any changes.

5> The PeopleSoft VB utility has been fixed so that it works on the current version of
PeopleSoft/MS Office. It can do this in bulk (per directory).

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 11



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

REM nvperfopts.sqgl
REM (c)2013 David Kurtz

spool nvperfopts

set pages 99

break on setid on tree name skip 1

rollback

/

SELECT T.SETID, T.TREE NAME, T.EFFDT

, T.TREE ACC SELECTOR --static selctors

; (SELECT X1.XLATSHORTNAME FROM PSXLATITEM X1 WHERE X1.FIELDNAME =
'TREE ACC SELECTOR' AND X1.FIELDVALUE = TREE ACC SELECTOR)

, T.TREE_ACC_SEL_OPT --between

;, (SELECT X2.XLATSHORTNAME FROM PSXLATITEM X2 WHERE X2 .FIELDNAME
'TREE_ACC SEL OPT' AND X2.FIELDVALUE = TREE ACC SEL OPT)

, T.TREE ACC METHOD --literals

;, (SELECT X3.XLATSHORTNAME FROM PSXLATITEM X3 WHERE X3.FIELDNAME
'TREE_ACC METHOD' AND X3.FIELDVALUE = TREE ACC METHOD)

FROM PSTREEDEFN T

WHERE (T.TREE ACC SELECTOR != 'S'

OR T.TREE ACC SEL OPT != 'B'

OR T.TREE ACC METHOD !='L")

AND X1.FIELDNAME = 'TREE ACC SELECTOR'

ORDER BY 1,2,3

/

/*increment the version numbersG*/
UPDATE PSLOCK

SET VERSION = VERSION + 1

WHERE OBJECTTYPENAME IN('SYS','TDM')
/

UPDATE PSVERSION

SET VERSION = VERSION + 1

WHERE OBJECTTYPENAME IN('SYS', 'TDM')
/

/*update nvision flags and version number on trees*/

/*This is the general settinq7*/
UPDATE PSTREEDEFN

SET TREE ACC_SELECTOR = 'S' --static selctors

, TREE ACC SEL OPT = 'B' --between

, TREE ACC METHOD = 'L' --literals

, VERSION = (SELECT VERSION FROM PSLOCK WHERE OBJECTTYPENAME = 'TDM')
, lastupddttm = SYStimestamp

, lastupdoprid = 'DAVID.KURTZ'

WHERE (TREE ACC SELECTOR != 'S'

OR TREE ACC SEL OPT != 'B'

OR TREE ACC METHOD != 'L')

AND tree strct id IN(SELECT tree strct id FROM pstreestrct WHERE node fieldname
= 'TREE NODE')

/

/*This is the exception for a very large tree that is resulting in massive
soL8+/

UPDATE PSTREEDEFN

SET TREE ACC SELECTOR = 'S' --static selctors

, TREE_ACC_SEL_OPT = 'B' --between

, TREE ACC METHOD = 'J' --join

, VERSION = (SELECT VERSION FROM PSLOCK WHERE OBJECTTYPENAME = 'TDM')
, lastupddttm = SYStimestamp

, lastupdoprid = 'DAVID.KURTZ'

WHERE setid = 'SHARE'

6 Note that this script updates the PeopleTools version numbers on the trees that it updates
causing them to be automatically recached by PeopleTools.

" This update statement updated the nVision options on all trees to the default settings.
8 This second update statement updates the nVision performance options to slightly different

for very large trees — it should be used for tree with more than 5000 nodes. The list of trees
should be hard coded, there is only likely to be a few.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 12 ©DAVID KURTZ



19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

AND tree strct_id IN(SELECT tree_strct id FROM pstreestrct WHERE node_ fieldname

= 'TREE_NODE')
AND tree name IN ('LIST NAMES OF VERY LARGE TREES');
AND 1=2

/

SELECT T.SETID, T.TREE NAME, T.EFFDT

;, T.TREE_ACC_SELECTOR --static selctors

;, (SELECT X1.XLATSHORTNAME FROM PSXLATITEM X1 WHERE X1.FIELDNAME =
'TREE_ACC_SELECTOR' AND X1.FIELDVALUE = TREE ACC SELECTOR)

, T.TREE ACC SEL OPT --between

, (SELECT X2.XLATSHORTNAME FROM PSXLATITEM X2 WHERE X2.FIELDNAME =
"TREE ACC SEL OPT' AND X2.FIELDVALUE = TREE ACC SEL OPT)

, T.TREE ACC METHOD --literals

, (SELECT X3.XLATSHORTNAME FROM PSXLATITEM X3 WHERE X3.FIELDNAME =
'TREE ACC METHOD' AND X3.FIELDVALUE = TREE ACC METHOD)

FROM PSTREEDEFN T

WHERE (T.TREE ACC_SELECTOR = 'S'

OR T.TREE ACC SEL OPT = 'B'

OR T.TREE ACC METHOD IN('J','L'))

AND t.tree strct id IN(SELECT tree strct id FROM pstreestrct WHERE

node fieldname = 'TREE NODE')
ORDER BY 1,2,3
/

select lastrefreshdttm from psstatus
/

UPDATE psstatus

SET lastrefreshdttm = SYSTIMESTAMP

/

select lastrefreshdttm from psstatus

/

select l.setid, l.tree name, l.effdt, x.selector num, count (*)

from pstreeleaf 1, pstreeselctl x

where l.setid = x.setid

and l.tree name = x.tree name

and l.effdt = x.effdt

and l.setcntrlvalue = x.setcntrlvalue

group by x.selector num, l.setid, l.setcntrlvalue, l.tree name, l.effdt
order by 1,2,3

/

spool off

nvperfopts.sql

Reversal

To be able to reverse this change out it will be necessary to have a backup copy of the table
PSTREEDEFN from which to restore the values of the tree TREE_ACC% columns.
Remember also to update the version number on the trees as follows.

UPDATE PSLOCK SET VERSION = VERSION + 1 WHERE OBJECTTYPENAME IN('SYS','TDM');
UPDATE PSVERSION SET VERSION = VERSION + 1 WHERE OBJECTTYPENAME

IN('SYS', 'TDM') ;

UPDATE PSTREEDEEFN a

SET VERSION = (SELECT version FROM pslock WHERE objecttypename = 'TDM')
, (tree acc selector, tree acc sel opt, tree acc method, lastupdoprid,
lastupddttm) = (

SELECT b.tree acc selector, b.tree acc sel opt, b.tree acc method,
b.lastupdoprid, b.lastupddttm

FROM <backup of pstreenode> b

WHERE a.setid = b.setid

AND a.tree name = b.tree name

AND a.effdt = b.effdt)

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 13



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

19 APRIL 2016

Tree Performance Overrides in Layouts

Tree performance options set at tree level can be overridden in the layouts®. Any overrides in

layouts should be removed, although we may encounter specific cases where they are
beneficial.

PeopleSoft created a utility to bulk update performance options in nVision layouts that may

need to be used. | have had some help getting it working again on modern versions of MS
Office Excel.

ALLD

PerfOptionsAnalysisToolDocumentation.zip

{LLY

k

PerfOptionSettingAnalysis.Fixed.zip

9 Historical footnote: In fact, originally in PeopleTools tree performance options could only be
set in the layouts. The options at tree level were added in PT8.4

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 14

©DAVID KURTZ



19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Coalescing Tree Leaves

A consequence of the Tree Performance Access Method 'suppress join; use literal values' is
that the resulting SQL in nVision will have a criteria for every leaf on each of the selected
nodes on that tree. There will be an equality condition for each single value leaf. | normally
set Selector Options to 'Ranges of values (BETWEEN)', so | get a between condition for each
ranged leaf. Behind the scenes, Oracle rewrites between as a pair of inequalities, so there is
no difference, but the SQL generated by nVision is slightly shorter.

The following is typical of nVision SQL with these performance options set.

SELECT A.ACCOUNT, SUM(A.POSTED TOTAL AMT)

FROM

PS_LEDGER A WHERE A.LEDGER='ACTUALS' AND A.FISCAL YEAR=2015 AND
A.ACCOUNTING PERIOD BETWEEN 1 AND 12 AND A.CURRENCY CD='GBP' AND
A.STATISTICS CODE=' ' AND (A.BUSINESS UNIT=

) AND (

.DEPTID='C500' OR A.DEPTID='C512' OR A.DEPTID='C1l17' OR A.DEPTID='C157' OR
.DEPTID='C340' OR A.DEPTID='C457' OR A.DEPTID='C510' OR A.DEPTID='A758' OR
.DEPTID='8220"' OR A.DEPTID='A704' OR A.DEPTID='Al121' OR A.DEPTID='Al1l1l0' OR
.DEPTID BETWEEN 'Al153' AND 'Al54' OR A.DEPTID BETWEEN '1151' AND '1152' OR
.DEPTID='A724' OR A.DEPTID BETWEEN '1131' AND '1133' OR A.DEPTID='A733' OR
.DEPTID='A217' OR A.DEPTID='A437' OR A.DEPTID='A130' OR A.DEPTID='Al34' OR
.DEPTID='A703' OR A.DEPTID='A714' OR A.DEPTID='A218' OR A.DEPTID='A226' OR
.DEPTID BETWEEN 'A135' AND 'Al138'

e

Although this access method can result in good execution time, it can also increase the time
taken for Oracle to parse the SQL statements such that this can become significant. It may
only be a few seconds in the case of a single SQL statement, but an nVision report book can
consist of thousands of SQL statements.

One way to reduce the parse time is simply to reduce the number of criteria in the SQL
statement by reducing the number of leaves on the tree. Tree leaves can be single values or
ranges of values, by coalescing adjacent leaves into ranged leaves the number of leaves can be
reduced.

The leafcoal.sgl script seeks to address this by repeatedly merging two consecutive
leaves on the same tree node into a single ranged leaf where possible. It performs
two checks before merging adjacent leaves on the same tree node:

e There is not an intermediate value on the detail field defined in the tree
structure record. So if the detail field was DEPT_TBL.DEPTID, the script
checks that there are no values of DEPTID on PS_DEPT TBL that are not
currently selected by existing leaves that would be included in the merged
leaf.

e There is not another leaf on another node on the tree that would intersect with
the merged leaf.

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 15



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

Instructions for running leafcoal.sq|

The utility is written in PL/SQL and runs as an anonymous blocks so there is nothing to
install. It should be run in SQL*Plus connected as the PeopleSoft owner ID (usually
SYSADM).

It is expected that there are some adjustments to the script that the user may need to make.

REM leafcoal.sql

REM (c)David Kurtz 2016

REM 06.04.2016 detect overlapping ranges on other tree nodes
REM 07.04.2016 added update leaf count

rollback;
spool leafcoal

set serveroutput on termout off trimspool on

DECLARE

k_testmode CONSTANT BOOLEAN := TRUElO: /*set this false to perform update*/
k_dateformat CONSTANT VARCHAR2 (10) := 'yymmdd';

k_oprid CONSTANT VARCHAR2 (20) := 'david.kurtz'll

1 _module VARCHAR2 (48) ;

1_action VARCHAR? (32) ;

1_debug_level INTEGER := 4;12

1_debug_indent INTEGER := 0;

no_structure_found EXCEPTION;
PRAGMA EXCEPTION INIT(no structure found,-20001);

PROCEDURE debug_msg (p_text VARCHAR2 DEFAULT ''
,p_debug level INTEGER DEFAULT 5) IS
BEGIN
IF p debug level <= 1 debug level AND p text IS NOT NULL THEN
sys.dbms_output.put_line (LPAD('.',1 debug indent,'.')||'('||p_debug level||')'||p_text);
END IF;
END debug msg;

PROCEDURE set action(p action name VARCHAR2 DEFAULT ''
+p_debug_level INTEGER DEFAULT 5) IS

BEGIN
1 debug indent := 1 debug indent + 1;
dbms_application_info.set_action(action_name=>p_action_name) ;
debug msg (p_text=>'Setting action to: '||p action name,p debug level=>p debug level);

END set_action;

PROCEDURE unset action(p action name VARCHAR2 DEFAULT ''
+p_debug_level INTEGER DEFAULT 7) IS

BEGIN
IF 1_debug_indent > 0 THEN
1_debug_indent := 1 debug_indent - 1;
END IF;
dbms_application_info.set_action(action_name=>p_action_name) ;
debug_msg (p_text=>'Resetting action to: '||p_action_name,p_debug_level=>p_debug level);

END unset_action;

FUNCTION show_bool (p_bool BOOLEAN) RETURN VARCHAR IS
BEGIN - -
IF p_bool THEN
RETURN 'TRUE';
ELSE
RETURN 'FALSE';
END IF;
END show_bool;

--identify the table, record and field referred to in the tree

10 As delivered, leafcoal.sql runs in a test mode that does not update the database but reports
on what it would do. Change k_testmode to FALSE to have script update the PeopleTools
tables.

11 When the script updates the tree leaves it also updates the tree definition, and updates the
last operation ID to this value. Change this as necessary.

12 The level of output written to the spool file can be controlled by changing the value of the
variable |_debug_level.

end of processing message

start of processing for tree

number of leaves in tree and number of leaves coalesced

details of leaves being compressed

start and end of each procedure

parameters passed to functions

number of rows updated/deleted during coalesce

© N o g ~ w0 DN RE

dynamic SQL statement

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 16 ©DAVID KURTZ



19 APRIL 2016

©DAVID KURTZ

TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

PROCEDURE get_structure_field

(p_setid IN VARCHAR2 DEFAULT ' '
,p_setcntrlvalue IN VARCHAR2 DEFAULT ' '
/p_tree_name IN VARCHAR2 DEFAULT ' '
,p_effdt IN DATE

,p_dtl_tabname  OUT VARCHAR2
,p_dtl recname OUT VARCHAR2
,p_dtl fieldname OUT VARCHAR2
) IS
1 module VARCHAR2 (48);
1_action VARCHAR2(32);
BEGIN
dbms_application info.read module (module name=>1 module, action name=>1 action);
set_action(p_action name=>'get structure field('||p_tree name||'/'||TO_CHAR(p_effdt,k dateformat)||"')
debug msg ('get_structure field('||p_setid||'/'||p_setcntrlvalue||'/'||p_tree name
|17/"| |'TO_CHAR (p_effdt, k_dateformat) || ") ",6);
SELECT DECODE (r.sgltablename,' ','PS_'||r.recname,r.sqltablename) dtl_ tabname
, s.dtl recname, s.dtl fieldname
INTO p_dtl tabname, p dtl recname, p dtl fieldname
FROM pstreedefn d
, pstreestrct s
, psrecdefn r
WHERE d.setid = p_setid

AND d.setcntrlvalue = p_setcntrlvalue

AND d.tree name = p_tree name

AND d.effdt = p_effdt

AND d.tree strct id = s.tree strct id

AND s.node_fieldname = 'TREE_NODE'

AND r.recname = s.dtl recname

debug msg ('structure field: '|[p_dtl tabname||'.'||p _dtl fieldname,5);

unset_action(p_action name=>1 action);

EXCEPTION
WHEN no_data_found THEN
debug_msg ('No tree structure record found',3);
unset action(p_action name=>1 action);
RAISE_APPLICATION_ERROR(-20001, 'No structure record found for tree '
| lp_setid||'/"||p_setcntrlvalue||'/'||p tree name||'/'||TO CHAR(p effdt,k dateformat));
END get_structure_field;

--process one named tree

PROCEDURE one_tree

(p_setid IN VARCHAR2 DEFAULT ' '
,p_setcntrlvalue IN VARCHAR2 DEFAULT ' '
/Pp_tree name IN VARCHAR2 DEFAULT ' '
,p_effdt IN DATE

) IS

1 dtl tabname psrecdefn.sqltablename$TYPE;
1 dtl recname pstreestrct.dtl recname$TYPE;
1 dtl fieldname pstreestrct.dtl fieldname$TYPE;
1_sql CLOB;

TYPE refcur IS REF CURSOR;
c_treeleaf refcur;

1 tree node num pstreeleaf.tree node num$TYPE;
1 range_ from pstreeleaf.range from$TYPE;

1 range_to pstreeleaf.range to%TYPE;
1_next_range_from pstreeleaf.range_from$TYPE;

1 _next_range_to pstreeleaf.range_ to%TYPE;
1 _coal_range from pstreeleaf.range from$TYPE
1 _coal_range_to pstreeleaf.range_to%TYPE

1 tree branch pstreeleaf.tree branch$TYPE

1 leaf count INTEGER;
1 _coal_count INTEGER
1 _node_count INTEGER;

1_module VARCHAR2 (48);
1_action VARCHAR2 (32);

BEGIN
set_action(p_action_name=>'one_tree('||p_tree name||'/'||TO_CHAR(p_effdt,k dateformat)|[')');
debug_msg ('Processing '||p_setid||'/'||p_setcntrlvalue||'/'||p_tree name

| 1"/"| |TO_CHAR (p_effdt, k_dateformat),2);
get_structure_field(p_setid, p_setcntrlvalue, p_tree name, p_effdt, 1 dtl tabname, 1 dtl_recname, 1_dtl fieldname);

SELECT COUNT (*)

INTO 1 _node_count

FROM pstreenode

WHERE setid = p_setid

AND setcntrlvalue = p_setcntrlvalue
AND tree_name = p_tree_name

AND  effdt = p_effdt;

SELECT COUNT (*)

INTO 1_leaf count

FROM pstreeleaf

WHERE setid = p_setid

AND setcntrlvalue = p_setcntrlvalue
AND tree_name = p_tree_name

AND effdt = p effdt;

debug_msg(l_node_count||' nodes, '||l_leaf count||' leaves',4);
-—dynamic sql to find coalescible leaves. No ref values between ranges or single values
--do not process branched trees
--Dynamic because structure field is configurable
—-assume SETID in key field
--ignore EFFDT processing. Do not coalesce even if not effective as at tree date
1 _sql 'WITH x AS (
SELECT lA*l3
’ LEAD (range_from,1) OVER (PARTITION BY setid, setcntrlvalue, effdt, tree node num, tree branch ORDER BY range_from)
next_range_from
’ LEAD (range_to,1) OVER (PARTITION BY setid, setcntrlvalue, effdt, tree node num, tree branch ORDER BY range_from)
next_range_to
FROM pstreeleaf 1
WHERE 1l.setid = :pl

AND 1.setcntrlvalue = :p2
AND l.tree name = :p3
AND 1.effdt = :p4

), ¥ AS (
SELECT x.*

13 This section builds the SQL for a dynamic query identifies leaves on the same tree node for
which there are no intermediate values on column referred to by the tree structure, nor on any
leaf on a different tree node

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 17




TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

19 APRIL 2016

, (SELECT count (*)
FROM 111 dtl_tabname||' d
WHERE '

FOR i IN (
SELECT fieldname
FROM psrecfielddb
WHERE recname = 1_dtl recname

AND MOD (useedit,2) = 1

AND fieldname = 'SETID'
) LOOP

1 sql :=1 sql||'d.'||i.fieldname||' = x.'||i.fieldname||' AND ';
END LOOP;
1 sql := 1 sql||'d.'||1_dtl fieldname||' > x.range_to

AND  d.'||l_dtl_fieldname||' < x.next_range_from) intermediates
’ (SELECT count (*)
FROM PSTREELEAF f

WHERE f.setid = x.setid

AND f.setentrlvalue = x.setcntrlvalue
AND f.tree_name = x.tree name

AND f.effdt = x.effdt

AND f.tree node num != x.tree node_num
AND f.range from <= x.next range to
AND f.range_to >= x.range_from

) overlapers FROM x
WHERE next range From is not null

)

from y
where intermediates=0
and overlapers=0
order by 1,2';
debug msg('SQL:'| |1 sql,8);

OPEN c_treeleaf FOR 1_sql USING p_setid, p_setcntrlvalue, p_tree name, p_effdt;
LOOP

EXIT WHEN c_treeleaf$NOTFOUND;
IF 1_coal_count = 0 THEN

debug msg ('Running in Test Mode - No Update',1);

ELSEl 4
UPDATE psversion
SET version = version+l

WHERE objecttypename IN('SYS',6'TDM');

UPDATE pslock

SET version = version+l
WHERE objecttypename IN('SYS','TDM');
END IF;
END IF;
1l coal count := 1 coal count + 1;

IF 1_range_to = 1_coal range_to THEN

1 coal_range to := 1 next_range_to;
ELSE

1_coal_range_from := 1_range_from;

1l coal range to := 1 next range to;
END IF;

--coalesce two leaves - update range on one leaf
IF k_testmode THEN

'I11_coal_range_to,6);

UPDATE pstreeleaflS

SET range_from = 1 coal_ range_from
, range to = 1 coal range to
WHERE setid = p_setid

AND setcntrlvalue = p_setcntrlvalue

AND tree name = p_tree name

AND effdt = p_effdt

AND tree node num = 1_tree node num

AND range_from = 1_next_range_from

AND range_to = 1 next range_to

AND tree branch = 1_tree branch;
debug_msg (SQL$ROWCOUNT | | ' rows updated',7);

--delete the other leaf
DELETE pstreeleaf
WHERE setid = p_setid

AND setcntrlvalue = p_setcntrlvalue
AND tree name = p_tree name

AND effdt = p_effdt

AND tree_node_num = 1_tree_node_num
AND range_from = 1 coal range_ from
AND range_to = 1_range_to

AND tree_branch = 1_tree_branch;
debug_msg (SQL$ROWCOUNT | | ' rows deleted',7);
END IF;
END LOOP;

IF NOT k_testmode AND 1 coal count > 0 THEN
UPDATE pstreedefn d16
SET d.version = (SELECT version FROM pslock WHERE objecttypename = 'TDM')
’ d.lastupdoprid = k_oprid
’ d.lastupddttm = SYSTIMESTAMP
’ d.leaf count = (SELECT COUNT (*)

select tree node num, range_from, range_to, next range from, next range_to, tree branch

FETCH c_treeleaf INTO 1_tree node num, 1 _range from, l_range_to, 1 next range from, l_next range_to, l_tree branch;

IF k_testmode THEN --update tree version prior to first coalesce, but not in test mode

debug_msg (1_range_from||'-'||1_range_tol||' + '||1l_next_range from||'-'||l_next range to||' => '||1l_coal_range_from||"'-
'I11_coal range to,4);
ELSE
debug_msg (1_range_from||'-'||1_range_tol||' + '||1l_next_range from||'-'||l_next range to||' => '||1l_coal_range_from||"'-

14 When the first change on a tree is detected, the version number for tree definitions is

incremented.

15 The script merges two leaves into one. One is updated, the other deleted.

16 The tree definition is updated at the end with the new version number, and the new number

of leaves on the tree. The number of nodes on the tree is unchanged.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 18

©DAVID KURTZ



19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

FROM pstreeleaf 1

WHERE 1l.setid = p_setid

AND l.setcntrlvalue = p_setcntrlvalue

AND l.tree name = p tree name
1

AND effdt = p_effdt)
WHERE d.setid = p_setid
AND d.setcntrlvalue = p_setcntrlvalue
AND d.tree name = p_tree name
AND d.effdt = p_effdt;
END IF;

CLOSE c_treeleaf;

debug msg (1 _coal count||' leaves coalesced ('||LTRIM(TO CHAR(100*1 coal count/NULLIF(l leaf count,0),'90'))[['%)"',3);
unset_action(p_action name=>1 action);
EXCEPTION

WHEN no_structure_found THEN
debug _msg ('Skipping tree',3);
unset_action (p_action _name=>1_action);
END one_tree;

BEGIN
dbms_application_info.read module(module name=>1 module, action name=>1 action);
dbms_application_info.set_module (module name=>'LEAFCOALESCE', action_name=>'MAIN');
FOR i IN (17
SELECT DISTINCT d.setid, d.setcntrlvalue, d.tree name, d.effdt
FROM pstreeselctl d
/* FROM pstreedefn d
, pstreestrct s
’ psrecfielddb f
WHERE d.tree_strct_id = s.tree_strct_id

AND s.node_fieldname = 'TREE_NODE'
-- AND d.TREE_ACC METHOD = 'L' --literal values
AND s.dtl_recname = f.recname
AND s.dtl fieldname = f.fieldname*/
-- AND tree_name = 'NAME OF_TREE'
) LOOP
one tree(i.setid, i.setcntrlvalue, i.tree name, i.effdt);
debug msg (' ',4);
END LOOP;

unset_action (p_action_name=>1_action);
IF k_testmode THEN
debug msg ('Running in Test Mode - No Update',1);
ELSE
debug msg ('Commit changes or rollback',1);
END IF;
END;
/
spool off
set termout on

The spool file output reports on the number of leaves coalesced. If the script does update the
PeopleTools tree tables, it does not commit the update. It is left for the user to commit or
rollback.

. (3) Processing SHARE, ,XXX ACCOUNT, 141201
. (4) 634 nodes, 2636 leaves
.(4)1358 leaves coalesced (52%)

(1)Commit changes or rollback

17 This query identifies the trees to be processed. It can be changed as necessary. For
example, you might process

e specific trees,

e most recent effective dated trees

o trees with literal values performance option
e trees with a tree structure record.

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 19



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Clearing Selector Control Records for which there is no Tree Definition
1.

19 APRIL 2016

This statement deletes rows from PSTREESELCTL for which no tree is defined in
PSTREEDEFN.

/

DELETE FROM
WHERE NOT EXISTS (

SELECT
FROM
WHERE
AND
AND
AND

pstreeselctl 1

Tyt
pstreedefn d

d.setid = l.setid
d.setcntrlvalue = l.setcntrlvalue
d.tree name = l.tree name
d.effdt = 1l.effdt)

The next script that clears dynamic selectors from the PSTREESELECT tables will also clear
any rows orphaned by this delete.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 20

©DAVID KURTZ



19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Clear Dynamic Selectors from Tree Selector Tables

2. This script deletes all rows from all of the PSTREESELECT tables which relate for
which there is no corresponding data in PSTREESELCTL because they are dynamic
selectors.

d. Action: Run treeselectorclup2.sgl in SQL*Plus connected as SYSADM.

e. There is no need to be able reverse this. Rows relating to dynamic selectors
can be left in the tree selector tables when an nVision crashes without
cleaning up after itself. Clearing debris from the tree selector tables is
something that should be done regularly regardless. In a system that still
uses dynamic selector | would suggest doing this daily.

REM treeselectorclup?2.sqgl

set termout on head off echo off feedback off timi off trimspool on trimout on pages 0
serveroutput on lines 200

spool treeselectorclup2

DECLARE
1 sglc CLOB;
1 sgld CLOB;
1 numrows INTEGER;
1 numsels INTEGER;
BEGIN
FOR i IN (
SELECT table name
FROM user tables
where table name LIKE 'PSTREESELECT '

ORDER BY 1

) LOOP
1 sglc := 'SELECT COUNT (DISTINCT selector Num), COUNT(*) FROM '||i.table name;
1 sgld := 'DELETE FROM '||i.table name||' t WHERE NOT t.selector num IN(SELECT

DISTINCT selector num FROM pstreeselctl)';
EXECUTE IMMEDIATE 1 sglc INTO 1 numsels, 1 numrows;
dbms output.put line('Table '||i.table name||':'||l numsels||' sectors,'||l numrows||'

rows');

IF 1 numrows > 0 THEN

dbms output.put line('SQL:'| |1l sqld);
EXECUTE IMMEDIATE lisqld;
dbms output.put line (SQL%ROWCOUNT||' rows deleted.');

EXECUTE IMMEDIATE 1 sglc INTO 1 numsels, 1 numrows;
dbms output.put line('Table '||i.table name||':'||l numsels]||'
sectors, '| |1l numrows||' rows');

COMMIT;
END IF;
END LOOP;
END;
/
spool off
show errors

The script produces a report of what it did. This is typical output.

Table PSTREESELECT01:0 sectors,0 rows

Table PSTREESELECT02:0 sectors,0 rows

Table PSTREESELECT03:1 sectors,85 rows

SQL:DELETE FROM PSTREESELECTO03 t WHERE NOT t.selector num IN(SELECT DISTINCT
selector num FROM pstreeselctl)

0 rows deleted.

Table PSTREESELECT03:1 sectors,85 rows

Table PSTREESELECT04:0 sectors,0 rows

Table PSTREESELECT05:2 sectors,l1l7 rows

SQL:DELETE FROM PSTREESELECTOS5 t WHERE NOT t.selectorinum IN(SELECT DISTINCT
selector num FROM pstreeselctl)

0 rows deleted.

Table PSTREESELECT05:2 sectors,l1l7 rows

Table PSTREESELECT06:13 sectors,2385 rows

SQL:DELETE FROM PSTREESELECTO06 t WHERE NOT t.selector_num IN (SELECT DISTINCT
selector num FROM pstreeselctl)

0 rows deleted.

Table PSTREESELECT06:13 sectors,2385 rows

Table PSTREESELECT07:0 sectors,0 rows

Table PSTREESELECT08:328 sectors, 87798 rows

SQL:DELETE FROM PSTREESELECT08 t WHERE NOT t.selector num IN(SELECT DISTINCT
selector num FROM pstreeselctl)

26633 rows deleted.

Table PSTREESELECT08:133 sectors, 61165 rows

Table PSTREESELECT09:0 sectors,0 rows

Table PSTREESELECT10:450 sectors, 66891 rows

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 21



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

19 APRIL 2016

45376
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

rows deleted.
PSTREESELECT10:
PSTREESELECT11:
PSTREESELECT12:
PSTREESELECT13:
PSTREESELECT14:
PSTREESELECT15:
PSTREESELECT16:
PSTREESELECT17:
PSTREESELECT18:
PSTREESELECT19:
PSTREESELECT20

PSTREESELECT20:
PSTREESELECT21:
PSTREESELECT22:
PSTREESELECT23:
PSTREESELECT24:
PSTREESELECT25
PSTREESELECT26:
PSTREESELECT27 :
PSTREESELECT28:
PSTREESELECT29:
PSTREESELECT30:

1
0
0
0
0
:0
0
0
0
0
0

74 sectors, 21515 rows

0
0
0
0
0
0
0
0
0

:3

sectors, 0
sectors, 0
sectors, 0
sectors, 0
sectors, 0
sectors, 0
sectors, 0
sectors, 0
sectors, 0

sectors, 130 rows

SQL:DELETE FROM PSTREESELECT20 t WHERE NOT t.selector num IN(SELECT DISTINCT
selector num FROM pstreeselctl)
104 rows deleted.
sectors, 26 rows

sectors, 0
sectors, 0
sectors, 0
sectors, 0
sectors, 0
sectors, 0
sectors, 0
sectors, 0
sectors, 0
sectors, 0

SQL:DELETE FROM PSTREESELECT10 t WHERE NOT t.selectorinum IN(SELECT DISTINCT
selector num FROM pstreeselctl)

rows
rows
rows
rows
rows
rows
rows
rows
rows

rows
rows
rows
rows
rows
rows
rows
rows
rows
rows

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 22

©DAVID KURTZ



19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Maintaining Statistics on Tree Selector Tables

First Time Generation of Statistics

Script treeselect_stat prefs.sql sets table preferences on all 30 tree selector tables.

e Histograms are collected on SELECTOR_NUM and TREE_NODE_NUM. Oracle
may choose to collect histograms on other columns if it judges it appropriate.
e have also created extended statistics on the combination of SELECTOR_NUM and

TREE_NODE_NUM
e  Statistics on the tree selector tables are locked to prevent the overnight statistics job

from updating them.

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 23



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

REM treeselect_stat prefs.sql
REM (c)2013 Go-Faster Consultancy Ltd.
REM histograms

spool treeselect stat perfs
set serveroutput on

REM set table prefs and unlock stats
BEGIN

FOR i IN (

SELECT table name FROM user Tables WHERE table name like 'PSTREESELECT '

) LOOP

dbms_stats.lock table stats

(ownname=>user

, tabname=>i.table name

) pte

dbms output.put line('Table:'||i.table name);
dbms stats.set table prefs
(ownname=>user
,tabname=>i.table name
,pname=>'METHOD OPT'
--,pvalue=>'FOR ALL COLUMNS SIZE AUTO FOR COLUMNS SIZE 254 SELECTOR NUM TREE NODE NUM'

,pvalue=>'FOR ALL COLUMNS SIZE 1 FOR COLUMNS SIZE 254 SELECTORiNUM'19
dbms stats.set table prefs
(ownname=>user
,tabname=>i.table name
,pname=>'STALE PERCENT'
,pvalue=>'1"' --lpct stale threshold to force regular stats refresh by the maintenance
job
)i
END LOOP;
END;
/

REM create extended stats20

DECLARE
1 clob CLOB;
e extension exists EXCEPTION;
PRAGMA EXCEPTION INIT (e extension exists,-20007);
BEGIN
FOR i IN (
SELECT table_ name FROM user_Tables
where table name like 'PSTREESELECT__ '
) LOOP
BEGIN
1 _clob:=sys.dbms_stats.create_extended_stats
(ownname=>user
, tabname=>i.table name
,extension=>' (SELECTOR_NUM, TREE_NODE_NUM) '
)i
dbms output.put line ('Extended stats:'||i.table name||':"'||1l clob);
EXCEPTION
WHEN e extension exists THEN
dbms_output.put line ('Extended stats already exist on :'||
i.table name||':'[|1l _clob);
END;
END LOOP;
END;
/

18 Statistics on the tree selectors are locked because a manual adjustment is made to two
densities immediately after stats are calculated.

19 Note that histograms are only built on SELECTOR_NUM which should have a frequency
histogram.

20 Extended statistics are collected on the combination of SELECTOR_NUM and
TREE_NODE_NUM.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 24 ©DAVID KURTZ



19 APRIL 2016

©DAVID KURTZ

TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

REM gather stats
BEGIN
FOR i IN (
SELECT table name, SUBSTR(table name,-2)

FROM user Tables WHERE table name like 'PSTREESELECT '

) LOOP

dbms output.put line('Table Stats:'||i.table name);

sys.dbms stats.gather table stats
(ownname=>user
,tabname=>i.table name
, force=>TRUE
);
--set density to 1 for range from
dbms_stats.set column stats
(ownname=>user
,tabname=>i.table name
,colname=>'RANGE FROM '||i.suffix
,density=>1
, force=>TRUE) ;
dbms_stats.set column stats
(ownname=>user
,tabname=>i.table name
,colname=>'RANGE TO '||i.suffix
,density=>1
, force=>TRUE) ;

END LOOP;

END;

/

21

select table name, stattype locked, num Rows,

from dba tab statistics

where table name like 'PSTREESELECT '
order by 1

/

set pages 99 lines 200 trimspool on
break on table name skip 1

select s.*, e.extension

from dba tab Col statistics s

left outer join dba stat extensions e

on e.owner = s.owner
and e.table name = s.table name

and e.extension_name = s.column_name

--where table name = 'PS_LEDGER'

where s.table name LIKE 'PSTREESELECT_ '
and s.num_distinct > 0

ORDER by 1,2,3

/

spool off

last_analyzed, stale_Stats

treeselect_stat_prefs.sql

21 After collecting statistics on the PSTREESELECTnn tables the density on the
RANGE_FROM_nn and RANGE_TO_nn columns is set to 1. This prevents Oracle from
under estimating the cost of looking up this table which can occur when the LEDGER table is

joined before the PSTREESELECTnn table.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 25



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Implementation

3. Action: Run treeselect_stat perfs.sql in SQL*Plus connected as SYSADM.

19 APRIL 2016

The script produces a report of what it has updated (not shown) and the statistics that have

been collected (shown below)

OWNER  TABLE NAME COLUMN NAME NUM DISTINCT LOW VALUE HIGH VALUE DENSITY NUM NULLS NUM BUCKETS LAST ANAL SAMPLE SIZE GLO USE

NOTES AVG COL LEN HISTOGRAM SCOPE  EXTENSION

SYSADM  PSTREESELECTO3 RANGE FROM 03 85 414257 524D42 1 0 1 13-J2N-16 85 YES YES
4 NONE SHARED

SYSADM RANGE TO 03 85 414257 524D42 1 0 1 13-J2N-16 85 YES YES
4 NONE SHARED

SYSADM SELECTOR_NUM 1 C30F361A C30F361A .005882353 0 1 13-JAN-16 85 YES NO
5 FREQUENCY SHARED

SYSADM SYS STUSRD6Y1KXDCHE4RDMONN3AAT 9 CA051413330F47455C25 CA1127122901472D5515 .111111111 0 1 13-J2N-16 85 YES NO

29 55

12 NONE SHARED ("SELECTOR NUM","TREE NODE NUM")

SYSADM TREE NODE NUM 9 c5134C ©514644C3B3C .111111111 0 1 13-J2N-16 85 YES NO
6 NONE SHARED

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 26

©DAVID KURTZ



19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

On-Going Maintenance of Statistics on Tree Selector Tables

Statistics on the tree selectors are locked because the density was manually reset, so a process
needs to be put in place to maintain the statistics as the static selectors are populated when
trees are used for the first time.

PeopleSoft inserts a row into PSTREESELCTL for each statistic selector. A database trigger
can be used to submit a database job to gather statististics in the same manner as the previous
script.

Action: Implement trigger by running pstreeselector_stats.sql in SQL*Plus connected as
SYSADM.

rem pstreeselector_ stats.sql

rem trigger to update stats on selector table as pstreeselctl is populated.
rem NB stats job is only fired on commit.

set echo on feedback on verify on termout on

spool pstreeselector stats

ROLLBACK;

CREATE OR REPLACE TRIGGER sysadm.pstreeselector stats
BEFORE INSERT OR UPDATE ON sysadm.pstreeselctl
FOR EACH ROW

DECLARE
1 jobno NUMBER ;
1 cmd VARCHAR2 (1000) ;
1 table name VARCHAR2 (18);
1 suffix VARCHAR2 (2) ;
BEGIN
1 table name := 'PSTREESELECT'||LTRIM(TO CHAR(:new.length,'00"));
1 suffix := SUBSTR(1 table name, -2);
1l cmd := 'dbms stats.gather table stats(ownname=>user,tabname=>'""
|11_table name||''', force=>TRUE) ;'
|| 'dbms_stats.set column stats (ownname=>user, tabname=>'""
|11 _table name||''',colname=>"''RANGE FROM '| |1l suffix||''',density=>1,force=>TRUE); "
|| 'dbms_stats.set column stats (ownname=>user, tabname=>'""
|11 _table name||''',colname=>"''RANGE TO '||1l suffix||''',density=>1, force=>TRUE);"';

dbms output.put line (1l cmd) ;
dbms_job.submit (1 _jobno,1 cmd);
EXCEPTION WHEN OTHERS THEN NULL;
END;
/

set serveroutput on
show errors

rollback;22

alter session set nls date format='hh24:mi:ss dd.mm.yyyy';

INSERT INTO sysadm.pstreeselctl VALUES ('GFC',' ', 'GFC TEST',6sysdate,42,42,sysdate,'R',1);
commit;

delete from sysadm.pstreeselctl where setid = 'GFC';

commit;

pause

select table name, num rows, last analyzed from user tables where table name like

'PSTREESELECT ' order by 1,2,3;

select table name, column name, num distinct, density from user tab columns where
table name = 'PSTREESELECTO01';

spool off

pstreeselector_stats.sql

22 This part of the script is a test. It is necessary to pause for a few seconds to allow time for
the job to run, before running the queries to see if the stats have been updated correctly on
PSTREESELECTO01 (which is not used by the application).

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 27



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

SQL> INSERT INTO sysadm.pstreeselctl VALUES('GFC',' ','GFC_TEST',sysdate,42,42,sysdate,'R',1) ;23
dbms_stats.gather_table_stats (ownname=>user, tabname=>'PSTREESELECT01', force=>TRUE) ;

dbms_stats.set_column_stats (ownname=>user, tabname=>'PSTREESELECT01', colname=>

'RANGE_FROM 01',density=>1, force=>TRUE) ;

dbms_stats.set_column_stats (ownname=>user, tabname=>'PSTREESELECT01', colname=>'RANGE_TO_01',density=>1, force=>TRUE) ;

SQL> select table name, column name, num distinct, density from user tab_ columns where

table name = 'PSTREESELECTO01';

TABLE NAME COLUMN NAME NUM DISTINCT DENSITY
PSTREESELECTO1 SELECTOR_NUM 0 0
PSTREESELECTO1 TREE_NODE_NUM 0 0
PSTREESELECTO1 RANGE FROM 01 0 124
PSTREESELECTO1 RANGE TO 01 0 1

23 \When an insert or update is made to PSTREESELCTL the trigger submits a PL/SQL
command string to the job scheduler and also prints the command out to the standard output
channel. In nVision this output is simply lost, but can be seen when in SQL*Plus with
serveroutput enabled

24 Note that the density is 1 even though the number of distinct rows is 0. Normally density
would be 0 in this case.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 28 ©DAVID KURTZ



19 APRIL 2016

TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Database Partitioning of Ledger tables

©DAVID KURTZ

Database partitioning is not an essential part of the nVision tuning solution, but it is extremely
effective. It allows the database to eliminate partitions that cannot contain data of interest
without having to scan them.

Most of the large queries in nVision are on the PS_LEDGER and PS_LEDGER_BUDG
tables. They always apply to a specific finanacial year, and often to a single accounting period
or they year to data. Therefore, these queries always contain an equi-join on the column
FISCAL_YEAR, and will contain either an equi-join or between clause on
ACCOUNTING_PERIOD. For example

SELECT A.ACCOUNT, SUM(A.POSTED TOTAL AMT)
FROM PS LEDGER A, PSTREESELECT05 L1
WHERE A.LEDGER='ACTUALS'

AND A.FISCAL YEAR=2016 AND

A.ACCOUNTING PERIOD=3

AND ...

A single period query

SELECT A.ACCOUNT, SUM(A.POSTED TOTAL AMT)
FROM PS LEDGER A, PSTREESELECT05 L1
WHERE A.LEDGER='ACTUALS'

AND A.FISCAL YEAR=2015 AND

A.ACCOUNTING PERIOD BETWEEN 1 AND 9

AND ...

A year-to-date query

These queries will always benefit on from partitioning on FISCAL_YEAR. There is often
some benefit to partitioning on ACCOUNTING_PERIOD, particularly the queries that
compare with the same period to date in the pervious fiscal year.

Oracle can only partition in two dimensions.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 29



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

Range Partitioning

| always recommend range partitioning the PS_LEDGER and PS_LEDGER_BUG tables in a
single dimension on the combination of FISCAL_YEAR and ACCOUNTING PERIOD to
produce single period partitions in the current and previous fiscal year. There should be a
separate partition for period 0, which is used to bring entries forward from the previous year,
and another partition for periods 998 and 999 which are used to carry entries forward to the
next year.

I would create the use something along the following lines to recreate the tables (comments in
footnotes)

CREATE TABLE ps ledger

(business unit VARCHARZ2 (5) NOT NULL
,ledger VARCHARZ2 (10) NOT NULL

)
TABLESPACE GLLARGE
PCTFREE 10 PCTUSED 80

PARTITION BY RANGE(FISCALiYEAR,ACCOUNTINGiPERIOD)25

(PARTITION ledger 2012 VALUES LESS THAN (2013,0) PCTFREE 02° coMpRESSZ’
,PARTITION ledger 2013 VALUES LESS THAN (2014,0) PCTFREE 0 COMPRESS

,PARTITION ledger 2014 VALUES LESS THAN (2015,0)28 PCTFREE 0 COMPRESS
,PARTITION ledger 2015 bf VALUES LESS THAN (2015,1) PCTFREE 0 COMPRESS

,PARTITION ledger 2015 11 VALUES LESS THAN (2015,12)
,PARTITION ledger 2015 12 VALUES LESS THAN (2015,13)

,PARTITION ledger 2015 cf VALUES LESS THAN (2016, 0)2°
,PARTITION ledger 2016 bf VALUES LESS THAN (2016,1)

,PARTITION ledger 2016 12 VALUES LESS THAN (2016,13)
,PARTITION ledger 2016 cf VALUES LESS THAN (2017,0)
)

ENABLE ROW MOVEMENT

PARALLEL

NOLOGGING

/

25 This is a single range partition but on the combination of two columns. This only works
because there is never a predicate on ACCOUNTING_PERIOD without there also being a
predicate on FISCAL_YEAR. It is the combination of these two columns that identify a
single accounting period.

26 Note that PCTFREE is set to 0 on these paratitions because the data is static, there is no
need to reserve free space for updates.

27 Simple compression has been specified so that when the table is rebuilt the data is
compressed. This is only applied to historical partitions, because it will not apply to rows
inserted in convential path mode by parts of the Oracle application. If you are licenced for
other forms of compression you could employ them on all partitions, and different levels of
compression on different partitons.

28 There is no need to create single period partitions for older fiscal years. This data is static
and is usually rarely accessed. Here, data for fiscal year 2014 is going to be in a partition
called LEDGER_2014, and all the data values are less than 2015. Each year, as a
maintenance task the partitions for the oldest year with periodic partitioning could be merged
into a single partition, They could also be compressed during that operation.

29 Single period partitions have been defined for the current and previous fiscal year.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 30 ©DAVID KURTZ



19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Sub-partitioning

It is possible to sub-partition tables in Oracle. This is partitioning in a separate dimensions.
Partitions can be eliminated independently in each dimension. Partitioning was introduced in
8i. Range-hash subpartitioning was available in 8i, range-list was introduced in 10g, and
range-range partitioning in 11g.

Some, but not all, PeopleSoft GL systems will benefit from sub-partitioning. The partitioning
column may also vary. It depends upon the data and the data volumes. There is no point
having 90% of the data in one partition.

For example, a customer with several ledgers created separate list sub-partitions for each of
the larger partitions.

CREATE TABLE ps ledger

(business unit VARCHARZ2 (5) NOT NULL

,ledger VARCHARZ2 (10) NOT NULL

500l

TABLESPACE GLLARGE

PCTFREE 10 PCTUSED 80

PARTITION BY RANGE (FISCAL YEAR,ACCOUNTING PERIOD)
SUBPARTITION BY LIST (LEDGER)

(PARTITION ledger 2012 VALUES LESS THAN (2013,0) PCTFREE 0 COMPRESS
(SUBPARTITION ledger 2012 act eur

VALUES ('ACT EUR')

,SUBPARTITION ledger 2012 act usd

VALUES ('ACT USD')

, SUBPARTITION ledger 2012 z others

VALUES (DEFAULT)

)

At another customer where different regions processed their data at different times with
different batch and reporting processs, list sub-partitions were proposed for the largest
business units in each region.

CREATE TABLE ps_ledger

(business unit VARCHARZ2 (5) NOT NULL

,ledger VARCHAR2 (10) NOT NULL

coc))

TABLESPACE GLLARGE

PCTFREE 10 PCTUSED 80

PARTITION BY RANGE (FISCAL YEAR,ACCOUNTING PERIOD)
SUBPARTITION BY LIST (BUSINESS UNIT)

(PARTITION ledger 2012 VALUES LESS THAN (2013,0) PCTFREE 0 COMPRESS
(SUBPARTITION ledger 2012 bu eur

VALUES ('BELOl', 'NLDO1', 'FRAQL')

,SUBPARTITION ledger 2012 bu usa

VALUES ('NY0O01','CAQO1','TX001"',..)

, SUBPARTITION ledger 2012 z others

VALUES (DEFAULT)

)

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 31



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

Tuning nVision Without Partitioning

The partitioning option is licenced option of Oracle Enterprise Edition. So it costs money.

The advantage of partitioning the ledger tables is that you can eliminate historical data, i.e.
previous fiscal years, without having to scan them. As data builds up over time this saving is
more significant. If you can't partition those tables you will have to scan through that
historical data every time you query the data.

It is also common to have a long narrower tail of data for previous fiscal years due to
migration. This skew can cause Oracle to miscalculate execution plans.

Even with partitioning it is important to purge unneeded fiscal years out of the LEDGER and
LEDGER_BUG tables, but without it is essential30.

30 Business users are almost universally averse to letting go of data, and most countries have
legislation that requires retention of data for several years. | always say that | am happy for
the data to be retained in the database, just not in the LEDGER and LEDGER_BUG tables.
These are for recent data that is regularly in use.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 32 ©DAVID KURTZ



19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

SQL Outlines/Baselines/Profiles/Patches

I don't normally recommend any of the Oracle plan stability technologies in conjuction with
nVision due to the dynamic nature of the SQL. However, in some very limited cases, it is the
only way | have found to consistently control the execution plan of this statement.

©DAVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 33



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

Additional nVision Monitoring with Fine Grain Audit

I use Oracle Fine Grain Audit (FGA) to capture access to certain nVision control tables in
order to:

e Set the session's ACTION attribute using DBMS_APPLICATION_INFO3! to the
values on the NVS_REPORT table. That value will visible on v$session and will be
captured by AWR and ASH.

e Identify the report that is running and whether it is using dynamic selectors32. This
can identify layouts with tree performance overrides.

It should be implemented as follows:

Granted Privileges
e Action: Explicitly grant (not via a role) select privilege on audit table to SYSADM

GRANT SELECT ON sys.fga_log$ TO SYSADM;
GRANT EXECUTE ON sys.dbms_fga TO SYSADM;

Audit Handler Procedure

e Action: Script fga_hander.sqgl (called from fga_audit_create.sql) will create a
PL/SQL package to act as an error handler for the audit policy on
PS_NVS_REPORT.

o It will extract the business unit and name of the report from the third and
forth parameters in the audit data and set the action of the session
accordingly33.

REM fga_handler.sql
spool fga handler

REM requires psftapi34

REM requires explicit
GRANT SELECT ON sys.fga log$ TO SYSADM;

31 Use of this package does not require any special licence.
32 Acknowledgements to Tyler McPheeters for the original idea and implementation.

33 Although this might change from customer to customer, and some further customisation
may be required.

34 Available from http://www.go-faster.co.uk/scripts.htm#psftapi.sql

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 34 ©DAVID KURTZ


https://www.linkedin.com/in/tmcpheeters
http://www.go-faster.co.uk/scripts.htm#psftapi.sql

19 APRIL 2016

©DAVID KURTZ

TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

CREATE OR REPLACE PROCEDURE sysadm.aeg fga nvision handler
(object schema VARCHAR2
,0bject name VARCHAR2
,policy name VARCHAR2)
AS
1 sglbind VARCHAR2 (4000) ;
1 parml VARCHAR2 (30) ;
1 parm2 VARCHAR2 (30) ;
1 parm3 VARCHAR2 (30) ;
1 parm4 VARCHAR2 (30)
BEGIN
BEGIN
SELECT x.lsglbind
0 SUBSTR (x.1lsglbind, x.startl, NVL
0 SUBSTR (x.1lsglbind, x.start2, NVL
' SUBSTR (x.1sglbind, x.start3,NVL(x.end3,x.lensqlbind+1l
0 SUBSTR (x.1lsglbind, x.start4,NVL (x.end4, x.lensglbind+1
INTO 1 sqglbind, 1 parml, 1 parm2, 1 parm3, 1 parmé
FROM (
SELECT 1.*
p NULLIF (REGEXP_ INSTR (1lsglbind,
p NULLIF (REGEXP_ INSTR (1lsglbind,
p NULLIF (REGEXP_ INSTR (1lsglbind,
p NULLIF (REGEXP INSTR (1lsglbind,
(
(
(
(

7

.endl, x.lensglbind+1
.end2,x.lensqlbind+1

.startl
.start2
.start3
.start4

parml
parm2
parm3

(x
(x
(x
(x parmé

) —x
) —x
) —x
) —x

)
)
)
)

h
o

startl
endl
start2
end2
start3
end3
start4d
end4

P
o

P
o

0 NULLIF (REGEXP INSTR (lsglbind,
’ NULLIF (REGEXP INSTR (lsglbind,
’ NULLIF (REGEXP INSTR (lsglbind,
’ NULLIF (REGEXP INSTR (lsglbind,
0 LENGTH (1sglbind) lensglbind
FROM sys.fga log$ 1
) X
WHERE x.sessionid USERENV ('SESSIONID')
AND x.entryid = USERENV ('ENTRYID')
AND x.obj$name = 'PS NVS REPORT';
EXCEPTION
WHEN no data found THEN
RAISE APPLICATION ERROR(-20000, '"AEG FGA NVISION HANDER: No Audit Row');
END;

R
o

e
B
G > WWwN N -
PR OROR O
B
o

.
o

.
o

H oSk S S HE S SE S
Sococococaoo
LLLLYLLs
+ o+ o+ o+ o+
P
[oNeoloNoNeNoNoNe)
éffffﬂﬂﬂ
+ o+ o+ o+ o+
P

.
o

IF 1 parm4 IS NULL THEN
1 parm4 := 1 parm3;
1 parm3 := 1 parm2;
1 parm2 := 1 parml;
END IF;

IF 1 parm4 IS NULL THEN
1 parm4 := 1 parm3;
1 parm3 := 1 parm2;
END IF;

IF 1 parm4 IS NULL THEN
1 parm4 := 1 parm3;
END IF;

dbms_output.
dbms_output.
dbms_output.

put_line(1_sglbind);
put_line(l_parml);
put_line(1_parm2);

;

)
dbms_output.put_line(1_parm3) ;
dbms_output.put_line(1_parm4)

dbms_application_info.set_action(SUBSTR('PI='| |psftapi.get_prcsinstance()||':'||1l_parm4]| |’
' |1 parm3,1,64));

——EXEEUTE IMMEDIATE 'ALTER SESSION SET

TRACEFILE IDENTIFIER=''PI='| |psftapi.get prcsinstance()||':'|[|1l parm4||':"'||l parm3|[]|'"'"'';
35

END;

/

show errors

35 It could also set the name of the session trace file to the same value as action. That is
currently commented out because even if not using trace, it can generate lots of small trace
files with just header information.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 35




TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

36

rem this is a test - expected output
rem ERROR at line 1:

rem ORA-20000: AEG FGA NVISION HANDER: No Audit Row

rem ORA-06512: at "SYSADM.AEG FGA NVISION HANDLER", line 28

rem ORA-06512: at line 1

exec aeg fga nvision handler ('SYSADM', 'PS NVS REPORT', 'PS NVS REPORT SEL');
spool off

36 The script includes a test of the error handle. It will produce an error message similar to
that in the comments in the script. However, if the privileges on the FGA table and package
are not in place you will get other errors.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 36 ©DAVID KURTZ



19 APRIL 2016

Audit Policies

©DAVID KURTZ

TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

e Action: Script fga_audit_create.sql will implement FGA policies on
o PS_NVS_REPORT. Audit Select. To capture name of report.
o PSTREESELNUM. Audit Select. To detect allocation of new selector
numbers when tree selector tables are maintained.
o PSTREESELECTNN (where nn between 01 and 30). Audit insert and delete
on tree selector tables. To detect use of dynamic selectors and introduction
of new trees.

BEGIN

DBMS_FGA.ADD_POLICY (

object_schema => 'SYSADM',

object_name => 'PS_NVS_REPORT',

policy name => 'PS_NVS_REPORT_SEL',

handler module => 'AEG_FGA NVISION_ HANDLER'

enable => TRUE,

statement_types => 'SELECT',

audit_ trail => DBMS_FGA.DB + DBMS_FGA.EXTENDED) ;
END;

K ok K ok ok ok ok ok ok ok K ok ok ok ok ok K ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok ok ok ok K ok K ok ok K ok ok K ok kK ok Kk ok Kk

K ok K ok ok ok ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok ok ok ok K ok K ok ok K ok ok K ok kK ok Kk ok Kk

BEGIN

REM fga_audit_create.sql
REM (c)2016 David Kurtz

REM (c)2014 T McPheeters
set echo on serveroutput on
spool fga audit create

%K kK ok ok ok ok ok ok ok ok ok ok K ok K ok K ok ok ok ok K ok ok ok ok ok ok K ok K ok ok ok ok ok ok K ok ok ok ok ok ok Kk Kk Kk ok ok kK

* track population/delete of tree selectors.
* detect dynamic selectors, detect dynamic selectors that were not deleted.
/**********************************************************/
BEGIN
FOR i IN(
SELECT r.recname, t.table name
FROM psrecdefn r

' user tables t
WHERE r.rectype = 0
AND t.table name = DECODE (r.sgltablename,' ','PS ') ||r.recname
AND ( r.recname like 'PSTREESELECT ')
AND NOT EXISTS (
SELECT 'x'

FROM user audit policies p
WHERE p.object name = t.table name

AND p.policy name = r.recname)
ORDER BY 1
) LOOP
dbms output.put line('Creating FGA Policy '||i.recname||' on insert and delete on

'|li.table name);
DBMS FGA.ADD POLICY (

object schema => 'SYSADM',
object name => i.table name,
policy name => i.recname,
enable => TRUE,
statement_types => 'INSERT, DELETE',
audit_trail => DBMS_FGA.DB + DBMS_FGA.EXTENDED) ;
END LOOP;
END;
/

/K ok ok ok sk ok ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok K ok

* track allocation of new selector num. Static selectors appear in PSTREESELCTL.
/**********************************************************/

BEGIN

DBMS_FGA.ADD_POLICY (

object_schema => 'SYSADM',

object name => 'PSTREESELNUM',

policy name => 'PSTREESELNUM',

enable => TRUE,

statement types => 'SELECT',

audit trail => DBMS FGA.DB + DBMS_ FGA.EXTENDED) ;
END;
/

K ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok K ok ok K ok ok K ok ok K ok K o ok K ok ok ok ok ok K ok K ok ok K ok ok K ok ok K ok K Kk ok Kk

* This policy logs query on the control table from which nVision parameters are read

* The error handle is used to name the oracle trace file. NB creates 0 length file even
if trace not invoked

/*************‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k**********************/

/

* This policy is used to log LEDGER queries

DBMS_FGA.ADD_POLICY (

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 37



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

object_ schema => 'SYSADM',

object name => 'PS LEDGER',

policy name => 'PS LEDGER NVS',

enable => TRUE,

statement types => 'SELECT',

audit condition => 'STATISTICS CODE = '' ''"',

audit trail => DBMS FGA.DB + DBMS FGA.EXTENDED) ;
END;
/
/**********************************************************/
spool off

Audit Archive/Purge

The audit records need to be archived and purged. [ would also
recommend setting the audit purge job as described in the Oracle
Database Security Guide, 23: Administering the Audit Trail
(https://docs.oracle.com/database/121/DBSEG/audit admin.htm#DBSE
G1026). I suggest matching the retention period to that of the ASH data.

I would suggest moving SYS.FGA_LOGS$ out of the SYSTEM tables to
another tablespace3’.

BEGIN
DBMS AUDIT MGMT.set audit trail location(
audit trail type => DBMS AUDIT MGMT.AUDIT TRAIL FGA STD,
audit trail location value => 'AUDIT AUX');
END;
/

37 See https://oracle-base.com/articles/11g/auditing-enhancements-11gr2

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 38 ©DAVID KURTZ


https://docs.oracle.com/database/121/DBSEG/audit_admin.htm#DBSEG1026
https://docs.oracle.com/database/121/DBSEG/audit_admin.htm#DBSEG1026
https://docs.oracle.com/database/121/DBSEG/audit_admin.htm#DBSEG1026
https://oracle-base.com/articles/11g/auditing-enhancements-11gr2

TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Detecting Use of Dynamic Selectors

When nVision runs with dynamic selectors it populate PSTREESELECT. This triggers an
FGA. The following query reports the FGA on PSTREESELECT and determines the report
by finding the corresponding FGA for select on PS_NVL_REPORT

set pages 99 lines 200 long 4000
column policyname format a20
column oshst format a30
column parm2 format a20
column clientid format a20
column lsgltext format a60
column lsglbind format a30
column stmt_ type format a8
column ntimestamp# format a25
column mintimestamp format a25
column maxtimestamp format a25
with x as (

SELECT 1.*

. NULLIF (REGEXP_INSTR (1lsqlbind,' #[0-9]+\([0-9]+\)\:',1,1,1,'i"'),0) startl
. NULLIF (REGEXP_INSTR (1sqlbind, ' #[0-9]1+\ ([0-9]+\)\:',1,2,0,'i"),0) endl

0 NULLIF (REGEXP_INSTR (1sqglbind, ' #[0-9]+\([0-9]+\)\:"',1,2,1,'i"),0) start2
o NULLIF (REGEXP_INSTR(lsqglbind, ' #[0-9]+\ ([0-9]+\)\:',1,3,0,'i"),0) end2

, NULLIF (REGEXP_INSTR (1lsqlbind, ' #[0-9]1+\([0-9]1+\)\:',1,3,1,'i'),0) start3
, NULLIF (REGEXP_INSTR(lsqglbind, ' #[0-9]+\ ([0-9]+\)\:',1,4,0,'i"),0) end3

, NULLIF (REGEXP_INSTR (1lsqglbind, ' #[0-9]1+\ ([0-9]+\)\:',1,4,1,'i"),0) start4
, NULLIF (REGEXP_INSTR (1lsqlbind, ' #[0-9]1+\([0-9]+\)\:',1,5,0,'i'),0) end4

’

LENGTH (1sqlbind) lensqglbind
FROM sys.fga log$ 1

), ¥y as (
SELECT x.*
P CAST (SUBSTR (x.1lsglbind, x.startl,NVL(x.endl,x.lensqglbind+1l)-x.startl) AS VARCHAR2(32)) parml
’ CAST (SUBSTR (x.1lsqglbind, x.start2,NVL(x.end2,x.lensglbind+l) -x.start2) AS VARCHAR2 (32)) parm2
0 CAST (SUBSTR (x.1lsqglbind, x.start3,NVL(x.end3,x.lensglbind+1l) -x.start3) AS VARCHAR2 (32)) parm3
P CAST (SUBSTR (x.1lsglbind, x.start4,NVL (x.end4,x.lensqglbind+1l) -x.start4) AS VARCHAR2 (32)) parm4
FROM X

)
select DISTINCT y.parm2

o a.policyname

7 MIN (a.ntimestamp#) mintimestamp

, MAX (a.ntimestamp#) maxtimestamp

-, DECODE (a.stmt_type, 1, 'SELECT',2, 'INSERT', 8, 'DELETE',a.stmt_type) stmt type

’ CAST (a.lsgltext AS VARCHAR2 (1000)) lsgltext
FROM sys.fga_log$ a
LEFT OUTER JOIN pstreeselctl s
ON CAST (a.lsqltext AS VARCHAR2 (1000)) LIKE '%'||s.selector num||'%"'

’ y
WHERE a.policyname LIKE 'PSTREESELECT '
and a.ntimestamp# > sysdate-1
and a.oshst like 'WINADROOTS%'
and a.oshst = y.oshst
and a.sessionid = y.sessionid
and y.policyname = 'PS_NVS_REPORT SEL'
and y.ntimestamp# = (
SELECT MAX (bl.ntimestamp#)
FROM sys.fga_log$ bl
WHERE bl.policyname = y.policyname
and bl.oshst = y.oshst
and bl.sessionid = y.sessionid
and bl.ntimestamp# <= a.ntimestamp#)
—-and a.stmt_type = 2 --delete statements only
and s.selector_num IS NULL --dynamic selector
GROUP BY a.policyname, y.parm2
" CAST (a.lsgltext AS VARCHAR2 (1000))
/

©DAVID KURTZ

PARM?2 is the name of the report.

LSQL_TEXT shows the query that triggered the fine-grained audit and hence we can see the
name of the tree involved.

PARM2 POLICYNAME LSQLTEXT

TR_RV_OP PSTREESELECT10 DELETE FROM PSTREESELECT10 WHERE SELECTOR_NUM=279034
TR_RV_OP PSTREESELECT10 DELETE FROM PSTREESELECT10 WHERE SELECTOR_NUM=279035
TR_RV_OP PSTREESELECT10 INSERT INTO PSTREESELECT10(SELECTOR_NUM, TREE_NODE_NUM, RANGE_

FROM_10,RANGE_TO_10) SELECT DISTINCT 279030, L.TREE_NODE_NUM,
SUBSTR(L .RANGE_FROM,1,10), SUBSTR(L.RANGE_TO,1,10) FROM PSTR
EELEAF L WHERE L.SETID='SHARE' AND L.SETCNTRLVALUE=' ' AND L

.TREE_NAME="ACCTROLLUP' AND L.EFFDT=TO_DATE('2015-01-01','YY

YY-MM-DD') AND L.TREE_NODE_NUM BETWEEN 1625000000 AND 168749

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 39



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

Other Recommended Changes

PeopleTools Index Platform Flags

Since PeopleTools 8.45 the platform radio button in PeopleTools is frequently set to 'some'’
though all the platform flags are ticked. This problem is explained at
http://blog.psftdba.com/2006/08/peopletools-platform-flags-on-indexes.html

editindex X

Index Id: Index Name: PS_PSPMTRANSHIST
W Unigue l7 r [~ Custom Key Order
Platform: ¢ &l & Some ¢ None [Not Active)
— Specific Platforms

v DB2 v DB2/Unix

IV Infomix V¥ Oracle

IV Sybase V' Microsoft
Comments:

[ ok ]

Cancel I

¥

|
Index | Type | Unig | Clust | Custom Order|&/D  |Key Fields | Platfm Record Fields
SR N PM_INSTANCE D <]

A PM INSTANCE ID PM_TRANS_DEFN_SET

A |user | N | N ¥ * - - Seiia PM_TRANS_DEFN_ID
Asc  |PM_TRANS_DEFN_SET PM_AGENTID
Asc  |PM_TRANS_DEFN_ID ggﬁlT[?ANS_STATUS
Asc  |PM_AGENTID
Asc  |PM_MON_STRT_DTTM _<| |PM_PERF_TRACE

B |User | N N b Some PM_CONTEXT_VALUE1
Asc |OPRID PM_CONTEXT_VALUE2
fsc  |PM_AGENTID PM_CONTEXT_VALUE3
Asc  |PM_MON_STRT_DTTM PM_CONTEXTID_1

C |User | N | N Yy Some | |PM_CONTEXTID_2
Asc  |PM_PERF_TRACE PM_CONTEXTID_3
Asc |PM_TRANS_DEFN_SET PM_PROCESS_ID
Asc  |PM_TRANS_DEFN_ID PM_AGENT_STRT_DTTh
Asc  |PM_METRIC_VALUE? =l PM_MON_STRT_DTTM
: e PM_TRANS_DURATION

Add Index | EdtDDL | Delete nde | PM_PARENT INST_ID o

PLd TAOD IKMCT In
oK l Cancel |

Though not part of the nVision performance work, it makes it much easier to review indexes
in Application Designer if the platform button is set to ALL when all the flags are ticked.

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 40

©DAVID KURTZ



http://blog.psftdba.com/2006/08/peopletools-platform-flags-on-indexes.html

19 APRIL 2016 TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX

Action: | recommend that it is applied to all PeopleSoft databases.

/

/

/

/

UPDATE PSVERSION
SET VERSION = VERSION + 1

WHERE OBJECTTYPENAME IN('SYS','RDM')

UPDATE PSLOCK
SET VERSION = VERSION + 1

WHERE OBJECTTYPENAME IN('SYS','RDM')

UPDATE PSRECDEFN

SET VERSION = (

WHERE RECNAME IN (

UPDATE psindexdefn

SET PLATFORM_DB4=PLATFORM_ORA
WHERE PLATFORM_DB2=PLATFORM_DBX
AND PLATFORM_DBX=PLATFORM_INF
AND PLATFORM_INF=PLATFORM_ORA
AND PLATFORM_ORA=PLATFORM_SYB
AND PLATFORM_SYB=PLATFORM_MSS

AND PLATFORM_ORA!=PLATFORM_DB4

UPDATE psindexdefn

SET PLATFORM_ALB=PLATFORM_ORA
WHERE PLATFORM_DB2=PLATFORM_DBX
AND PLATFORM_DBX=PLATFORM_INF
AND PLATFORM_INF=PLATFORM_ORA
AND PLATFORM_ORA=PLATFORM_SYB
AND PLATFORM_SYB=PLATFORM_MSS

AND PLATFORM_ORA!=PLATFORM_ALB

UPDATE psindexdefn

SET PLATFORM_SBS=PLATFORM_ORA
WHERE PLATFORM_DB2=PLATFORM_DBX
AND PLATFORM_DBX=PLATFORM_INF

AND PLATFORM_INF=PLATFORM_ORA

SELECT VERSION
FROM PSVERSION

WHERE OBJECTTYPENAME = 'RDM')

SELECT RECNAME

FROM PSINDEXDEFN

WHERE PLATFORM_DB2=PLATFORM_DBX

AND PLATFORM_DBX=PLATFORM_INF

AND PLATFORM_INF=PLATFORM_ORA

AND PLATFORM_ORA=PLATFORM_SYB

AND ( PLATFORM_ORA!=PLATFORM_SBS
OR PLATFORM_ORA!=PLATFORM_ALB

OR PLATFORM_ORA!=PLATFORM_DB4)

©DAvVID KURTZ GENERIC APPROACH TO NVISION PERFORMANCE TUNING 41



TECHNICAL NOTE - NVISION TUNING.GENERIC.DOCX 19 APRIL 2016

AND PLATFORM_ORA=PLATFORM_SYB
AND PLATFORM_SYB=PLATFORM_MSS

AND PLATFORM_ORA!=PLATFORM_SBS
/

COMMIT
/

Platformfix.sql

GENERIC APPROACH TO NVISION PERFORMANCE TUNING 42 ©DAVID KURTZ



	Technical Note
	Generic Approach to nVision Performance Tuning
	Contents
	Introduction
	Ledger and Tree Selector Indexing
	Ledger Indexing
	Tree Selector Indexing
	Optimal Index Compression

	nVision Tree Performance Options
	Generally Recommended Tree Performance Options
	Implementation
	Reversal

	Tree Performance Overrides in Layouts
	Coalescing Tree Leaves
	Instructions for running leafcoal.sql

	Clearing Selector Control Records for which there is no Tree Definition
	Clear Dynamic Selectors from Tree Selector Tables

	Maintaining Statistics on Tree Selector Tables
	First Time Generation of Statistics
	Implementation
	On-Going Maintenance of Statistics on Tree Selector Tables

	Database Partitioning of Ledger tables
	Range Partitioning
	Sub-partitioning
	Tuning nVision Without Partitioning

	SQL Outlines/Baselines/Profiles/Patches
	Additional nVision Monitoring with Fine Grain Audit
	Granted Privileges
	Audit Handler Procedure
	Audit Policies
	Audit Archive/Purge
	Detecting Use of Dynamic Selectors

	Other Recommended Changes
	PeopleTools Index Platform Flags




